03 Funciones cuadráticas

Una **función cuadrática** es aquella cuya expresión algebraica es de la forma $y = ax^2 + bx + c$, donde a, b y c son tres números reales, y además a $\neq 0$.

La representación gráfica de este tipo de funciones es una **parábola** en la que se cumple que:

- El coeficiente de x^2 , a, determina la **abertura** de la parábola. Cuanto mayor sea el valor absoluto de a, más cerrada será la abertura. Además, si a > 0, las ramas de la parábola apuntan hacia arriba: (a) y (b), y si a < 0, las ramas de la parábola apuntan hacia abajo: (c).
- El **vértice** de la parábola es el punto más alto (si a < 0) o más bajo (si a > 0) de la misma y sus coordenadas son:

$$V = (x_{\rm V}, y_{\rm V}) \rightarrow x_{\rm V} = -\frac{\rm b}{2\rm a}, y_{\rm V} = \rm f\left(-\frac{\rm b}{2\rm a}\right)$$

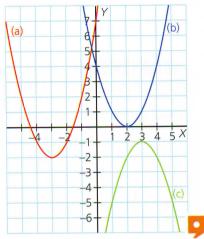
- La parábola es simétrica respecto de su **eje de simetría**, que es la recta paralela al eje *Y* que pasa por su vértice y que tiene por ecuación $x = -\frac{b}{2a}$.
- Los puntos de corte de la parábola con los ejes de coordenadas son:
 - **a.** Con el **eje** *X*: $y = 0 \rightarrow ax^2 + bx + c = 0$

Si la ecuación tiene dos soluciones, x_1 y x_2 , la parábola cortará al eje en los puntos $(x_1, 0)$ y $(x_2, 0)$: (a). Si la ecuación tiene una solución, x_1 , la parábola cortará al eje en un único punto, $(x_1, 0)$: (b). Si la ecuación no tiene solución, la parábola no corta al eje: (c).

b. Con el **eje** *Y*: $x = 0 \rightarrow y = a \cdot 0^2 + b \cdot 0 + c = c$

El punto de corte es (0, c).

La parábola está presente en numerosas facetas de la vida cotidiana: los faros de los coches, el chorro de agua de una fuente...



Ramas de la parábola y puntos de corte.

ACTIVIDAD RESUELTA

Representa gráficamente la función $y = x^2 - 2x - 8$.

- Como a = 1 > 0, las ramas de la parábola apuntan hacia arriba.
- Se calcula el vértice de la parábola:

$$x_V = -\frac{b}{2a} = \frac{-(-2)}{2 \cdot 1} = 1$$
; $y_V = 1^2 - 2 \cdot 1 - 8 = -9$

Luego, el vértice es V (1, -9).

- El eje de simetría es la abscisa del vértice: x = 1.
- Se determinan los puntos de corte con los ejes:
 - **a.** Con el eje X: $y = 0 \rightarrow x^2 2x 8 = 0$. A continuación, se resuelve la ecuación:

$$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-8)}}{2 \cdot 1} = \frac{2 \pm 6}{2} \rightarrow x_1 = 4 \text{ y } x_2 = -2$$

Los puntos de corte con el eje X son (4, 0) y (-2, 0).

b. Con el eje Y: $x = 0 \rightarrow y = 0^2 - 2 \cdot 0 - 8 = -8$. El punto de corte con el eje Y es (0, -8).

Para representar la gráfica, se elabora una tabla de valores en la que se anotan los puntos obtenidos y se dan a x valores alrededor de la abscisa del vértice, $x_v = 1$:

X	у
4	0
-2	0
0	-8
1	-9
2	-8

