Determinantes

Concepto de determinante

A cada matriz cuadrada A se le asigna un número denominado **determinante de** A, denotado por |A| o por **det** (A).

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

Determinante de orden uno

$$|a_{11}| = a_{11}$$

 $|5| = 5$

Determinante de orden dos

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \mathbf{a}_{11} \, \mathbf{a}_{22} - \mathbf{a}_{12} \, \mathbf{a}_{21}$$

Ejemplo:

$$\begin{vmatrix} 2 & 3 \\ -1 & 2 \end{vmatrix} = 2 \cdot 2 - [(-1) \cdot 3] = 4 + 3 = 7$$

Determinante de orden tres

Consideremos una matriz $3 \times 3 = (a_{ij})$. El determinante de A se calcula como sigue:

$$A = \begin{vmatrix} a_{11} & a_{12} & a_{13}^{=} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31} - a_{12} a_{21} a_{33} - a_{11} a_{23} a_{32}.$$

Ejemplo:

$$A = \begin{vmatrix} 3 & 2 & 1 \\ 0 & 2 & -5 \\ -2 & 1 & 4 \end{vmatrix} =$$

$$3 \cdot 2 \cdot 4 + 2 \cdot (-5) \cdot (-2) + 1 \cdot 0 \cdot 1 - 1 \cdot 2 \cdot (-2) - 2 \cdot 0 \cdot 4 - 3 \cdot (-5) \cdot 1 = 24 + 20 + 0 - (-4) - 0 - (-15) = 44 + 4 + 15 = 63$$

Obsérvese que hay **seis productos**, cada uno de ellos formado por tres elementos de la matriz. **Tres** de los productos aparecen con **signo positivo** (conservan su signo) y **tres con signo negativo** (cambian su signo).

1

Regla de Sarrus

Pierre Sarrus (1798, 1861) fue un matemático francés que estableció una regla para calcular **determinantes de orden 3**.

Regla de Sarrus

Los términos con **signo** + están formados por los productos de los elementos de la **diagonal principal** y los de las **diagonales paralelas** con su correspondiente **vértice opuesto**.

$$A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

Los términos con **signo -** están formados por los productos de los elementos de la **diagonal secundaria** y los de las **diagonales paralelas** con su correspondiente **vértice opuesto**.

$$A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

Ejemplo

$$\begin{vmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 2 & 0 & 5 \end{vmatrix} = 1 \cdot 1 \cdot 5 + 2 \cdot (-1) \cdot 2 + 3 \cdot 1 \cdot 0 - 3 \cdot 1 \cdot 2 - 2 \cdot 1 \cdot 5 - 1 \cdot 0 \cdot (-1) =$$

$$= 5 - 4 + 0 - 6 - 10 + 0 = -15$$

Menor complementario y adjunto

Menor complementario de un elemento de un determinante

Se llama **menor complementario** de un elemento a_{ij} de una matriz de orden n, al valor del determinante de orden n-1 que **se obtiene al suprimir en la matriz la fila i y la columna j**. Se designa por Mij

$$\begin{vmatrix} 1 & 2 & 1 \\ 2 & \boxed{5} & 4 \\ 3 & 6 & 2 \end{vmatrix} \rightarrow \begin{vmatrix} 1 & 1 \\ 3 & 2 \end{vmatrix}$$

Adjunto de un elemento de un determinante

Se llama **adjunto** del elemento a_{ii} al menor complementario anteponiendo:

El signo es + si i+j es par.

El signo es - si i+j es impar. Se designa generalmente por α_{ii} o por A_{ii}

$$\begin{vmatrix} 1 & 2 & 1 \\ 2 & 5 & 4 \\ 3 & 6 & 2 \end{vmatrix} \rightarrow - \begin{vmatrix} 2 & 1 \\ 6 & 2 \end{vmatrix}$$

El valor de un determinante es igual a la suma de productos de los elementos de una línea por sus adjuntos correspondientes:

$$A = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{m2} & \dots & a_{mn} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{m1} & \dots & a_{mn} \end{vmatrix} + \dots + a_{1n} \begin{vmatrix} a_{21} & a_{22} & \dots \\ \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots \end{vmatrix}$$

$$A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{32} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Ejemplo

$$\begin{vmatrix} 3 & 2 & 1 \\ 0 & 2 & -5 \\ -2 & 1 & 4 \end{vmatrix} = 3 \begin{vmatrix} 2 & -5 \\ 1 & 4 \end{vmatrix} - 2 \begin{vmatrix} 0 & -5 \\ -2 & 4 \end{vmatrix} + 1 \begin{vmatrix} 0 & 2 \\ -2 & 1 \end{vmatrix} = 3(8+5) - 2(0-10) + 1(0+4) = 39 + 20 + 4 = 63$$

Propiedades de los determinantes

$$\mathbf{1.}|\mathbf{A}^{\mathbf{t}}|=|\mathbf{A}|$$

El determinante de una matriz A y el de su traspuesta A^t son iguales.

$$A = \begin{vmatrix} 2 & 3 & 0 \\ 3 & 2 & 7 \\ 2 & 1 & 6 \end{vmatrix} \qquad A^{t} = \begin{vmatrix} 2 & 3 & 2 \\ 3 & 2 & 1 \\ 0 & 7 & 6 \end{vmatrix}$$
$$|A| = |A^{t}| = -2$$

2. |A|=0 Si:

Posee dos filas (o columnas) iguales

$$A = \begin{vmatrix} 2 & 3 & 2 \\ 3 & 2 & 3 \\ 2 & 3 & 2 \end{vmatrix} = 0$$

Todos los **elementos** de una fila (o columna) son **nulos**.

$$A = \begin{vmatrix} 2 & 3 & 2 \\ 3 & 2 & 3 \\ 0 & 0 & 0 \end{vmatrix} = 0$$

Los elementos de una fila (o columna) son **combinación lineal** del resto de filas (o columnas).

$$A = \begin{vmatrix} 2 & 3 & 2 \\ 1 & 2 & 4 \\ 3 & 5 & 6 \end{vmatrix} = 0$$

$$\mathbf{F_3} = \mathbf{F_1} + \mathbf{F_2}$$

3. Un determinante triangular es igual al producto de los elementos de la diagonal principal.

$$A = \begin{vmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 3 & 5 & 6 \end{vmatrix} = 2 \cdot 2 \cdot 6 = 24$$

4. Si en un determinante se cambian entre sí dos filas (o dos columnas) su determinante cambia de signo.

$$\begin{vmatrix} 2 & 1 & 2 \\ 1 & 2 & 0 \\ 3 & 5 & 6 \end{vmatrix} = - \begin{vmatrix} 1 & 2 & 0 \\ 2 & 1 & 2 \\ 3 & 5 & 6 \end{vmatrix}$$

5. Si a los elementos de una línea se le suman los elementos de otra paralela multiplicados previamente por un nº real el valor del determinante no varía.

$$\begin{vmatrix} 2 & 1 & 2 \\ 1 & 2 & 0 \\ 3 & 5 & 6 \end{vmatrix} = 16 \quad C_3 = 2C_1 + C_2 + C_3 \quad \begin{vmatrix} 2 & 1 & 7 \\ 1 & 2 & 4 \\ 3 & 5 & 17 \end{vmatrix} = 16$$

6. Si se multiplica una fila (o columna) de un determinante por un número real, el valor del determinante queda multiplicado por dicho número.

$$2 \cdot \begin{vmatrix} 2 & 1 & 2 \\ 1 & 2 & 0 \\ 3 & 5 & 6 \end{vmatrix} = \begin{vmatrix} 2 \cdot 2 & 1 & 2 \\ 1 \cdot 2 & 2 & 0 \\ 3 \cdot 2 & 5 & 6 \end{vmatrix} = \begin{vmatrix} 4 & 1 & 2 \\ 2 & 2 & 0 \\ 6 & 5 & 6 \end{vmatrix}$$

7. Si todos los elementos de una fila o columna están formados por dos sumandos, dicho determinante se descompone en la suma de dos determinantes.

$$\begin{vmatrix} 2 & 1 & 2 \\ a+b & a+c & a+d \\ 3 & 5 & 6 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 2 \\ a & a & a \\ 3 & 5 & 6 \end{vmatrix} + \begin{vmatrix} 2 & 1 & 2 \\ b & c & d \\ 3 & 5 & 6 \end{vmatrix}$$

$$8. |\mathbf{A} \cdot \mathbf{B}| = |\mathbf{A}| \cdot |\mathbf{B}|$$

El determinante de un producto es igual al producto de los determinantes.

Cálculo de determinantes

Determinante de orden uno

$$|a_{11}| = a_{11}$$

$$|-2| = -2$$

Determinante de orden dos

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \mathbf{a}_{11} \, \mathbf{a}_{22} - \mathbf{a}_{12} \, \mathbf{a}_{21}$$

$$|a_{21} - a_{22}|$$

$$\begin{vmatrix} 2 & 3 \\ -1 & 2 \end{vmatrix} = 2 \cdot 2 - \left[(-1) \cdot 3 \right] = 4 + 3 = 7$$

Determinante de orden tres

Se aplica la regla de Sarrus:

$$A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{32} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 2 & 0 & 5 \end{vmatrix} = 1 \cdot 1 \cdot 5 + 2 \cdot (-1) \cdot 2 + 3 \cdot 1 \cdot 0 - 3 \cdot 1 \cdot 2 - 2 \cdot 1 \cdot 5 - 1 \cdot 0 \cdot (-1) =$$

$$=5-4+0-6-10+0=-15$$

Cálculo de un determinante de cualquier orden

Consiste en conseguir que una de las líneas del determinante esté formada por elementos nulos, menos uno: el **elemento base o pivote**, que valdrá 1 ó -1.

Seguiremos los siguientes pasos:

1. Si algún elemento del determinante vale la unidad, se elige una de las dos líneas: la fila o la columna, que contienen a dicho elemento (se debe escoger aquella que contenga el mayor número posible de elementos nulos).

5

- 2. En caso negativo:
- 1. Nos fijamos en una línea que contenga el mayor número posible de elementos nulos y realizaremos transformaciones para que uno de los elementos de esa línea sea un 1 ó -1 (operando con alguna línea paralela).

2.Dividiendo la línea por uno de sus elementos, por lo cual deberíamos multiplicar el determinante por dicho elemento para que su valor no varie. Es decir sacamos factor común en una línea de uno de sus elementos.

3.Tomando como referencia el **elemento base**, **operaremos** de modo que **todos los elementos de la fila o columna**, donde se encuentre, **sean ceros**.

4. El valor del determinante será el producto del elemento base (en este caso es 1) por su correspondiente **adjunto**, con lo que obtenemos un **determinante de orden inferior** en una unidad al original.

$$\begin{vmatrix} 0 & 3 & 1 \\ -2 & -6 & -9 \\ 2 & -1 & -3 \end{vmatrix} = 2(-58)$$

Matriz inversa

Cálculo de la matriz inversa

La condición para que una matriz cuadrada A sea inversible es que $|A| \neq 0$

$$A^{-1} = \frac{1}{|A|} \cdot \left(A^*\right)^t$$

Donde A* es la matriz adjunta de A, es decir, la matriz en la que cada elemento de A ha sido sustituido por su adjunto.

(A*)^t es la matriz traspuesta de la adjunta de A

Ejemplo

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 0 & 0 \\ 5 & 1 & 1 \end{pmatrix}$$

1. Calculamos el determinante de la matriz, en el caso que el determinante sea nulo la matriz no tendrá inversa.

$$A = \begin{vmatrix} 2 & 0 & 1 \\ 3 & 0 & 0 \\ 5 & 1 & 1 \end{vmatrix} = 3$$

2. Hallamos la matriz adjunta, que es aquella en la que cada elemento se sustituye por su adjunto.

$$A^{+} = \begin{pmatrix} \begin{vmatrix} 0 & 0 \\ 1 & 1 \end{vmatrix} & -\begin{vmatrix} 3 & 0 \\ 5 & 1 \end{vmatrix} & \begin{vmatrix} 3 & 0 \\ 5 & 1 \end{vmatrix} \\ -\begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} & \begin{vmatrix} 2 & 1 \\ 5 & 1 \end{vmatrix} & -\begin{vmatrix} 2 & 0 \\ 5 & 1 \end{vmatrix} \\ \begin{vmatrix} 5 & 1 \end{vmatrix} & \begin{vmatrix} 2 & 0 \\ 5 & 1 \end{vmatrix} \\ \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} & -\begin{vmatrix} 2 & 1 \\ 3 & 0 \end{vmatrix} & \begin{vmatrix} 2 & 0 \\ 3 & 0 \end{vmatrix} \end{pmatrix} = \begin{pmatrix} 0 & -3 & 3 \\ 1 & -3 & -2 \\ 0 & 3 & 0 \end{pmatrix}$$

3. Calculamos la traspuesta de la matriz adjunta.

$$(A^{\bullet})^{\dagger} = \begin{pmatrix} 0 & 1 & 0 \\ -3 & -3 & 3 \\ 3 & -2 & 0 \end{pmatrix}$$

4. La matriz inversa es igual al producto del valor inverso de su determinante por la matriz traspuesta de la adjunta.

$$A^{-1} = \frac{1}{3} \begin{bmatrix} 0 & 1 & 0 \\ -3 & -3 & 3 \\ 3 & -2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{3} & 0 \\ -1 & -1 & 1 \\ 1 & -\frac{2}{3} & 0 \end{bmatrix}$$

Rango de una matriz

Es el **número de filas o columnas linealmente independientes**, utilizando esta definición se puede calcular usando el método de Gauss.

También podemos decir que el rango es: **el orden de la mayor submatriz cuadrada no nula** (**menor complementario distinto de cero**). Utilizando esta definición se puede calcular el rango usando determinantes.

7

Cálculo del rango de una matriz por determinantes

$$B = \begin{pmatrix} 2 & 1 & 3 & 2 \\ 3 & 2 & 5 & 1 \\ -1 & 1 & 0 & -7 \\ 3 & -2 & 1 & 17 \\ 0 & 1 & 1 & -4 \end{pmatrix}$$

1. Podemos descartar una línea si:

Todos sus coeficientes son ceros.

Hay dos líneas iguales.

Una línea es proporcional a otra.

Una línea es combinación lineal de otras.

Suprimimos la tercera columna porque es combinación lineal de las dos primeras: $c_3 = c_1 + c_2$

$$\begin{pmatrix} 2 & 1 & 3 & 2 \\ 3 & 2 & 5 & 1 \\ -1 & 1 & 0 & -7 \\ 3 & -2 & 1 & 17 \\ 0 & 1 & 1 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 2 \\ 3 & 2 & 1 \\ -1 & 1 & -7 \\ 3 & -2 & 17 \\ 0 & 1 & -4 \end{pmatrix}$$

2. Comprobamos si tiene rango 1, para ello se tiene que cumplir que al menos un elemento de la matriz no sea cero y por tanto su determinante no será nulo.

3. Tendrá rango 2 si existe alguna submatriz cuadrada de orden 2, tal que su determinante no sea nulo.

$$\begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix} = 1 \neq 0$$

4. Tendrá rango 3 si existe alguna submatriz cuadrada de orden 3, tal que su determinante no sea nulo.

$$\begin{vmatrix} 2 & 1 & 2 \\ 3 & 2 & 1 \\ -1 & 1 & -7 \end{vmatrix} = 0 \qquad \begin{vmatrix} 2 & 1 & 2 \\ 3 & 2 & 1 \\ 3 & -2 & 17 \end{vmatrix} = 0 \qquad \begin{vmatrix} 2 & 1 & 2 \\ 3 & 2 & 1 \\ 0 & 1 & -4 \end{vmatrix} = 0$$

Como todos los determinantes de las submatrices son nulos no tiene rango 3, por tanto r(B) = 2.

5. Si tiene rango 3 y existe alguna submatriz de orden 4, cuyo determinante no sea nulo, tendrá rango 4. De este mismo modo se trabaja para comprobar si tiene rango superior a 4.